Az egyetem kutatóinak vezetésével megszületett a hatszor több töltést hordozó akkumulátor
Mikor a zsebünkben hordott okostelefonok lassan már lazán kiváltanak egy átlagos irodai számítógépet, akkor egyre erõseben érezzük az elmúlt évek egyik nagy hiányosságát, mely természetesen az akkumulátor-technológiában keresendõ. Úgy tûnik, hogy végre a kutatók megmászták azt a lépcsõfokot, melynek meghódításán valójában régóta dolgoztak már, ugyanis nagyszerû hír érkezett az új, minden korábbinál nagyobb kapacitással bíró akkumulátorok fejlesztésérõl.
Az örvendetes szintugrásért egy, a Stanford Egyetem vezetése alatt álló, nemzetközi kutatócsoport felel, akik a bejelentés alapján olyan újratölthetõ akkumulátorokat fejlesztettek ki, melyek akár hatszor több töltést lesznek képesek eltárolni, mint a ma ismert, kereskedelmi forgalomban elérhetõ megoldások. A leleplezésért az a Nature folyóirat augusztus 25-i számában olvasható tanulmány felel, mely azóta már a sajtó többi szereplõjének figyelmét is felkeltette. Az ok érthetõ, hiszen pont akkor érkeznek ennyire jó hírek, amikor az elektromos autózás éppen felemelkedõben van, márpedig, ha hihetünk az elõrelépés részleteit kifejtõ tanulmánynak, akkor az iparág és az autótulajdonosok számára akár hatszor nagyobb távolság leküzdése is elérhetõvé válhat, továbbra is egyetlen feltöltést követõen. A helyzet pedig az okostelefonok piacának is hatalmas lendületet hozhat, hiszen a mindent is tudó csodakészülékek végre nem csak a benchmark tesztek eredményei által versenghetnek egy-egy irodai minõsítésû laptoppal, de végre üzemidõben is, és végre valóban azzá az eszközzé válhatnak, amire a felhasználók sok-sok éve várnak.
Az új, úgynevezett alkálifém-klór akkumulátorok, amelyeket a Stanford vegyészprofesszora, Hongjie Dai és a doktorjelölt Guanzhou Zhu által vezetett kutatócsoport fejlesztett ki, a nátrium-klorid (Na/Cl2) vagy a lítium-klorid (Li/Cl2) klórrá történõ oda-vissza kémiai átalakításán alapulnak. Mint kiderült, a véletlennek ezúttal is legalább akkora szerepe volt, mint a lázas munkának és a tudósok hozzáértésének, a meglepetéssel zárult kísérlet eredeti célja ugyanis nem egészen ez volt. Dai és Zhu ugyanis egyáltalán nem az újratölthetõ nátrium- és lítium-klór-akkumulátor létrehozását tûzte ki célul, hanem a már meglévõ, tionil-kloridot használó – az 1970-es években kifejlesztett –akkumulátortechnológiák továbbfejlesztésén dolgoztak. Az ok, amiért eddig még senki nem készített nagy teljesítményû újratölthetõ nátrium-klór vagy lítium-klór akkumulátort, az az, hogy a klór túl reaktív és kihívást jelent, hogy nagy hatékonysággal vissza lehessen alakítani kloriddá. Abban a néhány esetben, amikor másoknak sikerült bizonyos fokú újratölthetõséget elérni, az akkumulátor teljesítménye gyengének bizonyult. Egyik korai, klórral és nátrium-kloriddal végzett kísérletük során azonban a stanfordi kutatók észrevették, hogy az egyik vegyi anyag átalakulása a másikba valahogy stabilizálódott, ami némi újratölthetõséget eredményezett. "Nem gondoltam, hogy ez lehetséges" – mondta Dai. "Legalább egy évbe telt, mire tényleg rájöttünk, hogy mi folyik itt".
A kutatók elképzelései szerint akkumulátoraikat egy napon olyan helyzetekben is felhasználhatják, ahol a gyakori újratöltés nem praktikus vagy nem kívánatos, például mûholdakban vagy távérzékelõkben. Sok egyébként használható mûhold kering a Föld körül elavultan a lemerült akkumulátoraik miatt. A hosszú élettartamú újratölthetõ akkumulátorokkal felszerelt jövõbeli mûholdakat napelemes töltõkkel lehetne felszerelni, ami sokszorosára növelné hasznosságukat. Egyelõre azonban az általuk kifejlesztett mûködõ prototípus olyan kis hétköznapi elektronikai eszközökben való alkalmazásra lehet alkalmas, mint a hallókészülékek vagy a távirányítók. A szórakoztató elektronika vagy az elektromos jármûvek esetében még sokkal több munka van hátra az akkumulátorok szerkezetének megtervezéséhez, az energiasûrûség növeléséhez, az akkumulátorok méretének növeléséhez és a ciklusok számának növeléséhez.
Az eredmény egy lépés az akkumulátortervezés fõnyereményének tartott nagy energiasûrûség felé. A kutatók eddig 1200 milliamperórát értek el grammonként a pozitív elektróda anyagából, míg a kereskedelmi lítium-ion akkumulátorok kapacitása ma legfeljebb 200 milliamperóra grammonként. "A miénk legalább hatszor nagyobb kapacitással rendelkezik" - mondta Zhu.