Stanfordról érkeznek a hatszor erõsebb akkumulátorok

Az egyetem kutatóinak vezetésével megszületett a hatszor több töltést hordozó akkumulátorVégre látványos szintlépést érhet ez az akku-technológia

Mikor a zsebünkben hordott okostelefonok lassan már lazán kiváltanak egy átlagos irodai számítógépet, akkor egyre erõseben érezzük az elmúlt évek egyik nagy hiányosságát, mely természetesen az akkumulátor-technológiában keresendõ. Úgy tûnik, hogy végre a kutatók megmászták azt a lépcsõfokot, melynek meghódításán valójában régóta dolgoztak már, ugyanis nagyszerû hír érkezett az új, minden korábbinál nagyobb kapacitással bíró akkumulátorok fejlesztésérõl.


Az örvendetes szintugrásért egy, a Stanford Egyetem vezetése alatt álló, nemzetközi kutatócsoport felel, akik a bejelentés alapján olyan újratölthetõ akkumulátorokat fejlesztettek ki, melyek akár hatszor több töltést lesznek képesek eltárolni, mint a ma ismert, kereskedelmi forgalomban elérhetõ megoldások. A leleplezésért az a Nature folyóirat augusztus 25-i számában olvasható tanulmány felel, mely azóta már a sajtó többi szereplõjének figyelmét is felkeltette. Az ok érthetõ, hiszen pont akkor érkeznek ennyire jó hírek, amikor az elektromos autózás éppen felemelkedõben van, márpedig, ha hihetünk az elõrelépés részleteit kifejtõ tanulmánynak, akkor az iparág és az autótulajdonosok számára akár hatszor nagyobb távolság leküzdése is elérhetõvé válhat, továbbra is egyetlen feltöltést követõen. A helyzet pedig az okostelefonok piacának is hatalmas lendületet hozhat, hiszen a mindent is tudó csodakészülékek végre nem csak a benchmark tesztek eredményei által versenghetnek egy-egy irodai minõsítésû laptoppal, de végre üzemidõben is, és végre valóban azzá az eszközzé válhatnak, amire a felhasználók sok-sok éve várnak.


Az új, úgynevezett alkálifém-klór akkumulátorok, amelyeket a Stanford vegyészprofesszora, Hongjie Dai és a doktorjelölt Guanzhou Zhu által vezetett kutatócsoport fejlesztett ki, a nátrium-klorid (Na/Cl2) vagy a lítium-klorid (Li/Cl2) klórrá történõ oda-vissza kémiai átalakításán alapulnak. Mint kiderült, a véletlennek ezúttal is legalább akkora szerepe volt, mint a lázas munkának és a tudósok hozzáértésének, a meglepetéssel zárult kísérlet eredeti célja ugyanis nem egészen ez volt. Dai és Zhu ugyanis egyáltalán nem az újratölthetõ nátrium- és lítium-klór-akkumulátor létrehozását tûzte ki célul, hanem a már meglévõ, tionil-kloridot használó – az 1970-es években kifejlesztett –akkumulátortechnológiák továbbfejlesztésén dolgoztak. Az ok, amiért eddig még senki nem készített nagy teljesítményû újratölthetõ nátrium-klór vagy lítium-klór akkumulátort, az az, hogy a klór túl reaktív és kihívást jelent, hogy nagy hatékonysággal vissza lehessen alakítani kloriddá. Abban a néhány esetben, amikor másoknak sikerült bizonyos fokú újratölthetõséget elérni, az akkumulátor teljesítménye gyengének bizonyult. Egyik korai, klórral és nátrium-kloriddal végzett kísérletük során azonban a stanfordi kutatók észrevették, hogy az egyik vegyi anyag átalakulása a másikba valahogy stabilizálódott, ami némi újratölthetõséget eredményezett. "Nem gondoltam, hogy ez lehetséges" – mondta Dai. "Legalább egy évbe telt, mire tényleg rájöttünk, hogy mi folyik itt".

Hongjie Dai, a kutatócsoport vezetõje


A kutatók elképzelései szerint akkumulátoraikat egy napon olyan helyzetekben is felhasználhatják, ahol a gyakori újratöltés nem praktikus vagy nem kívánatos, például mûholdakban vagy távérzékelõkben. Sok egyébként használható mûhold kering a Föld körül elavultan a lemerült akkumulátoraik miatt. A hosszú élettartamú újratölthetõ akkumulátorokkal felszerelt jövõbeli mûholdakat napelemes töltõkkel lehetne felszerelni, ami sokszorosára növelné hasznosságukat. Egyelõre azonban az általuk kifejlesztett mûködõ prototípus olyan kis hétköznapi elektronikai eszközökben való alkalmazásra lehet alkalmas, mint a hallókészülékek vagy a távirányítók. A szórakoztató elektronika vagy az elektromos jármûvek esetében még sokkal több munka van hátra az akkumulátorok szerkezetének megtervezéséhez, az energiasûrûség növeléséhez, az akkumulátorok méretének növeléséhez és a ciklusok számának növeléséhez.

Lítium bányászat (kép: reuters.com)


Az eredmény egy lépés az akkumulátortervezés fõnyereményének tartott nagy energiasûrûség felé. A kutatók eddig 1200 milliamperórát értek el grammonként a pozitív elektróda anyagából, míg a kereskedelmi lítium-ion akkumulátorok kapacitása ma legfeljebb 200 milliamperóra grammonként. "A miénk legalább hatszor nagyobb kapacitással rendelkezik" - mondta Zhu.

2021. 09. 04

SSD hiba jelei: 10 tipp, hogyan ismerheted fel időben

SSD hiba jelei: 10 tipp, hogyan ismerheted fel időben
Az SSD hiba jelei sokszor apró, kezdetben észrevétlen dolgokban bújnak meg, de ha nem figyelsz rájuk, könnyen komoly adatvesztéshez vezethetnek. Mivel az SSD-k évek óta a számítógépek és laptopok meghatározó adattároló eszközei, fontos, hogy tudd, mikor kell cselekedni.
Ebben a cikkben részletesen áttekintjük, mire figyelj, hogy időben észrevedd a problémát, és megelőzd a kellemetlen helyzeteket.
Lassuló rendszerindítás és programbetöltés
Gyakori rendszerösszeomlások és lefagyások
Adatvesztés és fájlok hibás működése
Szokatlan zajok és hőmérséklet-emelkedés
SMART adatok ellenőrzése
Furcsa hibakódok és rendszerüzenetek
Hirtelen eltűnő tárhely
Figyelmeztető szoftverek használata
Gyakran ismételt kérdések
Összegzés
Lassuló rendszerindítás és programbetöltés
Az egyik leggyakoribb SSD hiba jelei közé tartozik, amikor a számítógéped lassabban indul, vagy a programok betöltése szokatlanul hosszú időt vesz igénybe. Az SSD-k általában villámgyorsak, így ha észreveszed, hogy egyre többet vársz az indításra, érdemes komolyan venni a jeleket. Ez a lassulás gyakran a memóriacellák kopására vagy a vezérlő chip problémáira utalhat, amelyek előre jelzik a komolyabb hibát.
Gyakori rendszerösszeomlások és lefagyások
Ha az operációs rendszer váratlanul összeomlik, vagy gyakran lefagy, az is lehet az SSD hiba jelei egyik megn

SSD lassulás: 5 gyakori ok, ami lelassítja a meghajtót

SSD lassulás: 5 gyakori ok, ami lelassítja a meghajtót
Az SSD lassulás egy olyan jelenség, amivel szinte mindenki találkozik idővel, aki használja ezt a gyors, modern tárolót. Az SSD-k sebessége legendás, de nem mindig marad az, és sokszor érezheted azt, hogy a géped régi, lassú merevlemezhez hasonlóan kezd működni.
Ne aggódj, ez nem ritka, és a háttérben több ok is állhat, amit érdemes ismerni, ha szeretnéd fenntartani a maximális teljesítményt.
Az írási ciklusok és a NAND memória hatása
A TRIM parancs hiánya vagy nem megfelelő működése
Telítettség: amikor kevés a szabad hely
Fragmentáció az SSD-n – valóban gondot jelent?
Firmware és illesztőprogramok elavulása
Hőmérséklet és túlmelegedés
A háttérben futó folyamatok és rendszerterhelés
SSD karbantartás és hosszú távú teljesítmény
Gyakran ismételt kérdések
Összegzés
Az írási ciklusok és a NAND memória hatása
Az SSD-k NAND flash memóriát használnak, ami gyors, de nem végtelenül tartós. Minden írási művelet egy bizonyos számú ciklust fogyaszt, és hosszú távon a memória cellái kopnak. Ezért ha gyakran írsz és törölsz adatot, az SSD lassulás fokozatosan jelentkezhet. Ez nem azt jelenti, hogy azonnal tönkremegy a meghajtó, de a teljesítmény csökkenhet, főleg amikor sok adatot mozgat a rendszer.
A TRIM parancs hiánya vagy nem megfelelő működése
A TRIM egy olyan technológia, ami segít az SSD-nek tisztán tartani

SSD meghajtó élettartama: 5 tény, amit kevesen ismernek

SSD meghajtó élettartama: 5 tény, amit kevesen ismernek
Az SSD meghajtó élettartama sok felhasználó számára titokzatosnak tűnik, pedig a modern meghajtók élettartamával kapcsolatban számos tény létezik, amit érdemes ismerned, ha hosszú távon szeretnéd megbízhatóan használni az eszközödet.
Sokan azt hiszik, hogy az SSD-k gyorsan tönkremennek, vagy hogy a merevlemezekhez képest sokkal kényesebbek, pedig a valóság ennél árnyaltabb.
Hogyan mérhető az SSD élettartama?
Miért más az SSD, mint a hagyományos HDD?
Hőmérséklet és környezet hatása
Használat és írási szokások
TRIM és más karbantartási mechanizmusok
Firmware és szoftverfrissítések szerepe
Mi történik, ha túlhasználod az SSD-t?
Hosszú távú használat és megbízhatóság
Gyakran ismételt kérdések
Összegzés
Hogyan mérhető az SSD élettartama?
Amikor az SSD meghajtó élettartamáról beszélünk, több szempontot is figyelembe kell venni. A gyártók általában TBW (Total Bytes Written) vagy DWPD (Drive Writes Per Day) értéket adnak meg. A TBW azt mutatja meg, mennyi adatot lehet összesen ráírni az eszközre, míg a DWPD napi szintű használat mellett ad iránymutatást. Fontos, hogy ezek az értékek nem jelentenek konkrét időtartamot, hanem statisztikai átlagokat, így mindig egy kis biztonsági tartalékot is számíts bele.
Miért más az SSD, mint a hagyományos HDD?
A hagyományos merevlemezekben forgó lemezek és mechanikus fej mozo
Értékelések
Az értékeléshez be kell jelentkezned.

Légy naprakész!
PCX 2006-2025.
Kapcsolat: [email protected]
Cookie / süti kezelés Az oldalon cookie-kat használunk, melynek részleteit itt találod.